(a) e/m of a particle is called the specific charge of the particle.
e/m = v/rB
Here, r is the radius of curvature, B is the strength of magnetic field, v is the velocity, e is the charge on cathode ray particle and m is the mass.
(b) v = E/B
(a) Presence of current for zero value potential indicates that the electrons are ejected from the surface of emitter with some energy.
(b) A gradual change in the number of electrons reaching the collector due to change in its potential indicates that the electrons are ejected with a variety of velocities.
(c) Current is reduced to zero for some negative potential of collector indicating that there is some upper limit to the energy of electrons emitted.
(d) Current depends upon the intensity of incident light.
(e) Stopping potential is independent of the intensity of light.
(a) Stopping potentialdepends upon thefrequency of light. Greater the frequency of light greater is the stopping potential.
(b) Saturation current is independent of frequency.
(c) Threshold frequency is the minimum frequency, that capable of producing photoelectric effect.
(a) Photoelectric effect is an instantaneous process.
(b) Photoelectric current is directly proportional to the intensity of incident light and is independent of its frequency.
(c) The stopping potential and hence the maximum velocity of the electrons depends upon the frequency of incident light and is independent of its frequency.
(d) The emission of electrons stops below a certain minimum frequency known as threshold frequency.
E = hf = hc/λ
Here h is the Planck’s constant and f is the frequency.
(a) ½ mvmax2 = hf – W0
(b) ½ mvmax2 = hf – hf0 = h(f- f0) = h [c/λ – c/λ0]
(c) eV0 = hf - W0
(d)V0 = [(h/e)f] – [W0/e]
Here f0 is threshold frequency.
?Kmax= ½ mvmax2 = eV0
λe= [12.27/√V]Å
(a) Number of photons per sec per m2, np = Intensity/hf
(b) Number of photons incident per second, np = Power/hf
(c) Number of electrons emitted per second = (efficiency per surface)× (number of photons incident per second)
(a) λc = h/m0c
Here h is the Planck’s constant, m0 is the rest mass of electron and c is the speed of light.
(b) Change in wavelength:- λ' – λ =λc (1-cos?)
So, mvr = nh/2π
Here λ is the wavelength of electron and d is distance between the planes.
(a) N(θ) ∝ cosec4(θ/2)
(b) Impact parameter, b = [(Ze2) (cot θ/2)]/[(4πε0)E]
Here, E = ½ mv2 = KE of theα particle.
(c) Distance of closest approach, r0 = 2Ze2/(4πε0)E
Here E = ½ mv2 = KE of the α particle.
(a) The central part of the atom called nucleus, contains whole of positive charge and almost whole of the mass of atom. Electrons revolve round the nucleus in fixed circular orbits.
(b) Electrons are capable of revolving only in certain fixed orbits, called stationary orbits or permitted orbits. In such orbits they do not radiate any energy.
(c) While revolving permitted orbit an electron possesses angular momentum L (= mvr) which is an integral multiple of h/2π.
L=mvr =n (h/2π)
Here n is an integer and h is the Planck’s constant.
(d) Electrons are capable of changing the orbits. On absorbing energy they move to a higher orbit while emission of energy takes place when electrons move to a lower orbit. If f is the frequency of radiant energy,
hf= W2-W1
Here W2 is the energy of electron in lower orbit and W1 is the energy of electron in higher orbit.
(e) All the laws of mechanics can be applied to electron revolving in a stable orbit while they are not applicable to an electron in transition.
(a) Orbital velocity of electron:- vn= 2πkZe2/nh
For a particular orbit (n= constant), orbital velocity of electron varies directly as the atomic number of the substance.
vn∝Z
(b) For a particular element (Z= constant), orbital velocity of the electron varies inversely as the order of the orbit.
vn∝1/n
(c) v = nh/2πmr
?r= n2h2/4π2kmZe2
So, r∝n2
For, C.G.S system (k = 1), r = n2h2/4π2mZe2
S.I (k = 1/4πε0), r =(ε0/π) (n2h2/mZe2)
K.E = ½ mv2 = ½ k (Ze2/r)
P.E = -k (Ze2/r )
W= K.E + P.E
W=- ½ k (Ze2/r) = -k2 2π2Z2me4/n2h2
For, C.G.S (k = 1), W = - [2π2Z2me4/n2h2]
For, S.I. ( k = 1/4πε0), W = - (1/8ε02) [Z2me4/n2h2]
Since, W∝1/n2, a higher orbit electron possesses a lesser negative energy (greater energy) than that of a lower orbit electron.
Frequency, f = k2[2π2Z2me4/h3] [1/n12 – 1/n22]
Wave number of radiation,
Here R is the Rydberg’s constant and its value is,
R= k2 [2π2Z2me4/ch3]
(a) Radius of orbit:-
r= n2h4/4π2me2 (C.G.S)
r= (ε0/π) (n2h2/me2) (S.I)
(b) Energy of electron:-
W= 2π2me4/n2h2 (C.G.S)
W =(1/8ε0)[me4/n2h2]
(c) Frequency, wavelength and wave number of radiation:-
C.G.S:- k =1 and Z=1
Frequency= f=2π2me4/h3 [1/n12 – 1/n22]
Wave number = 1/λ = 2π2me4/ch3 [1/n12 – 1/n22]
S.I:- k =1/4πε0 and Z=1
Frequency= f = (1/8ε0) (me4/h3)[1/n12 – 1/n22]
Wave number = 1/λ = (1/8ε02) (me4/ch3)[1/n12 – 1/n22]
R=k2 =2π2z2 me4/ch3
For hydrogen atom, Z = 1, R = RH = k2 (2π2me4/ch3).
For C.G.S system (k=1), RH = 2π2 me4/ch3
For S.I system (k=1/4πε0), RH = (1/8ε02) (me4/ch3)
Wave number, 1/λ = RH [1/n12 – 1/n22]
(a) For Lyman series:- 1/λ = R [1– 1/n2], n = 2,3,4…..∞
(b) For Balmer series:- 1/λ = R [1/22 – 1/n2], n =3,4,5…..∞
(c) For Paschen series:-1/λ = R [1/32 – 1/n2], n =4,5,6…..∞
(d) For Brackett series:-1/λ = R [1/42 – 1/n2], n =5,6,7…..∞
(e) P-fund series:-1/λ = R [1/52 – 1/n2], n =6,7,8…..∞
(a) Lyman:- λmin = 912 Å
(b) Balmer:-λmin = 3645 Å
(c) Paschen:- λmin = 8201 Å
W = -k22π2me4/n2h2
For, n=1, W1 = -13.6 eV
For the first excited state, n=2, W2 =W1/4 = (-13.6/4) eV = -3.4 eV
For the second excited state, n=3, W3 =W1/9 = (-13.6/9) eV = -1.51 eV
Similarly, for other excited states, W4 = -0.85 eV and W5 = -0.54 eV
- E1 = +(13.6Z2)eV
(a) For H-atom, I.E = 13.6 eV
(b) For He+ ion, I.E = 54.4 eV
(c) For Li++ ion, I.E = 122.4 eV
(a) For H-atom, I.P = 13.6 eV
(b) For He+ ion, I.P = 54.42 eV
0 comments:
Post a Comment